(本小题满分12分)已知函数f(x)=x2-2(a+1)x+2alnx(a>0).
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)的单调区间;
(3)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.
已知函数的图象与直线交于点P,若图象在点P处的切线与x轴交点的横坐标为,则++…+的值为( )
A.-1 | B.1-log20132012 | C.-log20132012 | D.1 |
(本小题满分14分)设函数f(x)=(x–1)2+alnx,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y–1=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)有两个极值点x1,x2且x1<x2,求证:f(x2)>–ln2.
已知函数
(Ⅰ)讨论函数的单调性
(Ⅱ)若函数与函数的图像关于原点对称且就函数分别求解下面两问:
①问是否存在过点的直线与函数的图象相切? 若存在,有多少条?若不存在,说明理由.
②求证:对于任意正整数,均有(为自然对数的底数)
已知函数(为常数).
(1)若是函数的一个极值点,求的值;
(2)当时,试判断的单调性;
(3)若对任意的,使不等式恒成立,求实数的取值范围.
(本小题满分13分)已知函数.
(1)当时,求曲线在处的切线方程;
(2)设函数,求函数的单调区间;
(3)若,在上存在一点,使得成立,求的取值范围.
(本小题满分12分)已知函数(为自然对数的底数),曲线在点处的切线方程为.
(1)求,的值;
(2)任意,时,证明:.
函数.
(I)函数在点处的切线与直线垂直,求a的值;
(II)讨论函数的单调性;
(III)不等式在区间上恒成立,求实数a的取值范围.
已知函数f(x)=k(x﹣1)ex+x2.
(Ⅰ)当时k=﹣,求函数f(x)在点(1,1)处的切线方程;
(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;
(Ⅲ)当k≤﹣l时,求函数f(x)在[k,1]上的最小值m.
已知函数R).
(1)若曲线在点处的切线与直线平行,求的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且时,证明:
已知函数,.
(1)当时,求函数在处的切线方程;
(2)是否存在实数,使得对任意的,恒有成立?若存在,求出实数的取值范围;若不存在,请说明理由.
已知函数在处取得极值.
(1)求a、b的值;
(2)求过点且与曲线相切的切线方程.
(本小题满分13分)对于函数,如果它们的图象有公共点P,且在点P处的切线相同,则称函数和在点P处相切,称点P为这两个函数的切点.设函数,.
(Ⅰ)当,时,判断函数和是否相切?并说明理由;
(Ⅱ)已知,,且函数和相切,求切点P的坐标;
(Ⅲ)设,点P的坐标为,问是否存在符合条件的函数和,使得它们在点P处相切?若点P的坐标为呢?(结论不要求证明)