已知函数f(x)=k(x﹣1)ex+x2.(Ⅰ)当时k=﹣,求函数f(x)在点(1,1)处的切线方程;(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;(Ⅲ)当k≤﹣l时,求函数f(x)在[k,1]上的最小值m.
△ABC顶点A(1, 1), B(-2, 10), C(3, 7)ÐBAC平分线交BC边于D,求D点坐标
已知分别是椭圆的左右焦点,其左准线与轴相交于点N,并且满足,设A、B是上半椭圆上满足的两点,其中.(1)求此椭圆的方程;(2)求直线AB的斜率的取值范围.
已知函数(1)求在区间上的最大值;(2)若方程有且只有三个不同的实根,求实数的取值范围.
平面直角坐标系中,为坐标原点,给定两点,点满足,其中,且.(1)求点的轨迹方程;(2)设点的轨迹与双曲线交于两点,且以为直径的圆过原点,求证:为定值;(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围.
关于的方程:.(1)若方程表示圆,求实数的范围;(2)在方程表示圆时,若该圆与直线相交于两点,且,求实数的值;(3)在(2)的条件下,若定点的坐标为(1,0),点是线段上的动点,求直线斜率的取值范围.