已知,点在函数的图象上,其中(1)证明数列是等比数列;(2)设,求及数列的通项;(3)记,求数列的前项和。
(本小题满分15分)已知函数.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)若函数与的图象有两个不同的交点,求的取值范围;(Ⅲ)设点是函数图象上的两点,平行于的切线以为切点,求证:.
(本小题满分14分)已知动圆过定点,且和定直线相切.(Ⅰ)求动圆圆心的轨迹的方程;(Ⅱ)已知点,过点作直线与曲线交于两点,若(为实数),证明:.
(本小题满分14分)已知函数(为常数)的最大值是3.(Ⅰ)求的值;(Ⅱ)在中,分别是角的对边,,求的值.
(本小题满分15分)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,已知AB=a,AC=2,AA1=1,点D在棱B1C1上,且B1D∶DC1=1∶3. (Ⅰ)证明:BD⊥A1C; (Ⅱ)若二面角B-A1D-B1的大小为60º,试求a的值.
(本小题满分14分)将3个完全相同的小球随机地放入编号依次为1,2,3,4,5的盒子里,用随机变量 表示有球盒子编号的最大值.(Ⅰ)求;(Ⅱ)求的分布列和数学期望.