.已知为常数,函数()。(Ⅰ) 若函数在区间(-2,-1)上为减函数,求实数的取值范围;(Ⅱ).设 记函数,已知函数在区间内有两个极值点,且,若对于满足条件的任意实数都有(为正整数),求的最小值。
已知,(且). (1)过作曲线的切线,求切线方程; (2)设在定义域上为减函数,且其导函数存在零点,求实数的值.
椭圆的两焦点坐标分别为,且椭圆过点. (1)求椭圆方程; (2)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.
如图,在四棱锥中,平面平面,,是等边三角形,已知,. (1)求证:平面;(2)求三棱锥的体积.
在中,内角所对边长分别为,,,. (1)求的最大值及的取值范围; (2)求函数的最小值.
已知,,点. (1)求当时,点满足的概率; (2)求当时,点满足的概率