某射击运动员为争取获得2010年广州亚运会的参赛资格正在加紧训练.已知在某次训练中他射击了枪,每一枪的射击结果相互独立,每枪成绩不低于10环的概率为,设为本次训练中成绩不低于10环的射击次数,的数学期望,方差.(1)求的值;(2)训练中教练要求:若有5枪或5枪以上成绩低于10环,则需要补射,求该运动员在本次训练中需要补射的概率.(结果用分数表示.已知:,)
设函数 (1)若的最小值为3,求的值; (2)求不等式的解集.
已知曲线(为参数),(为参数). (1)化的方程为普通方程,并说明它们分别表示什么曲线; (2)过曲线的左顶点且倾斜角为的直线交曲线于两点,求.
如图,四点在同一圆上,与的延长线交于点,点在的延长线上. (1)若,,求的值; (2)若,证明:.
(本小题满分12分)已知函数,. (1)若恒成立,求实数的值; (2)若方程有一根为,方程的根为,是否存在实数,使?若存在,求出所有满足条件的值;若不存在,说明理由.
(本小题满分12分)已知的两顶点坐标,,圆是的内切圆,在边,,上的切点分别为,(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线. (1)求曲线的方程; (2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.