在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.
(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;
(2)求多面体ABCDE的体积.
如图甲,在平面四边形ABCD中,已知
,
,现将四边形ABCD沿BD折起,使平面ABD
平面BDC(如图乙),设点E,F分别为棱AC,AD的中点.
(1)求证:DC
平面ABC;
(2)设
,求三棱锥A-BFE的体积.
如图,三角形
中,
,
是边长为
的正方形,平面
⊥底面
,若
、
分别是
、
的中点.
(1)求证:
∥底面
;
(2)求证:
⊥平面
;
(3)求几何体
的体积.
如图,已知正方体
的棱长为2,E、F分别是
、
的中点,过
、E、F作平面
交
于G.
(l)求证:EG∥
;
(2)求二面角
的余弦值;
(3)求正方体被平面
所截得的几何体
的体积.
如图,在直角梯形
中,
°,
,
平面
,
,
,设
的中点为
,
.
(1) 求证:
平面
;
(2) 求四棱锥
的体积.
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,
,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.
(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.
如图:已知长方体
的底面
是边长为
的正方形,高
,
为
的中点,
与
交于
点.
(1)求证:
平面
;
(2)求证:
∥平面
;
(3)求三棱锥
的体积.
如图,直三棱柱
中,
,
,
是
的中点,△
是等腰三角形,
为
的中点,
为
上一点.
(1)若
∥平面
,求
;
(2)平面
将三棱柱
分成两个部分,求较小部分与较大部分的体积之比.
如图,在四棱锥
中,底面
为矩形,
.
(1)求证
,并指出异面直线PA与CD所成角的大小;
(2)在棱
上是否存在一点
,使得
?如果存在,求出此时三棱锥
与四棱锥
的体积比;如果不存在,请说明理由.
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线
AE、CF都与平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大小;
(2)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.
如图甲,
是边长为6的等边三角形,
分别为
靠近
的三等分点,点
为边
边的中点,线段
交线段
于点
.将
沿
翻折,使平面
平面
,连接
,形成如图乙所示的几何体.
(1)求证:
平面
(2)求四棱锥
的体积.
如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
(1)证明:BC1//平面A1CD;
(2)设AA1=AC=CB=2,AB=
,求三棱锥C一A1DE的体积.
如图在四棱锥
中,底面
是矩形,
平面
,
,点
是
中点,点
是
边上的任意一点.
(1)当点
为
边的中点时,判断
与平面
的位置关系,并加以证明;
(2)证明:无论点
在
边的何处,都有
;
(3)求三棱锥
的体积.