如图,直三棱柱中, , ,是的中点,△是等腰三角形,为的中点,为上一点.(1)若∥平面,求;(2)平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比.
(本小题满分12分)已知公比为负值的等比数列中,,. (1)求数列的通项公式; (2)设,求数列的前项和.
(本小题满分14分)已知圆心在轴上的圆过点和,圆的方程为. (1)求圆的方程; (2)由圆上的动点向圆作两条切线分别交轴于,两点,求的取值范围.
(本小题满分14分)已知函数. (1)若函数在处的切线平行于轴,求实数的值,并求此时函数的极值; (2)求函数的单调区间.
(本小题满分14分)已知点在直线:上,是直线与轴的 交点,数列是公差为1的等差数列. (1)求数列,的通项公式; (2)若是否存在,使成立?若存在,求出所有符合 条件的值;若不存在,请说明理由.
(本小题满分14分)如图,已知正方体的棱长为3,,分别是棱,上的点,且. (1)证明:,,,四点共面; (2)平面将此正方体分为两部分,求这两部分的体积之比.