(本小题满分14分)给定函数(1)试求函数的单调减区间;(2)已知各项均为负的数列满足,求证:;(3)设,为数列的前项和,求证:。
已知且,函数,,记 (Ⅰ)求函数的定义域及其零点; (Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.
在中,分别是角的对边,为的面积,若,且. (Ⅰ)求的值; (Ⅱ)求的最大值.
若函数对定义域中任意均满足,则称函数的图象关于点对称. (1)已知函数的图象关于点对称,求实数m的值; (2)已知函数在上的图象关于点对称,且当时,,求函数在上的解析式; (3)在(1)(2)的条件下,当时,若对任意实数,恒有成立,求实数的取值范围.
已知圆的圆心为,,半径为,圆与离心率的椭圆的其中一个公共点为 ,、分别是椭圆的左、右焦点. (1)求圆的标准方程; (2)若点的坐标为,试探究直线与圆能否相切,若能,求出椭圆和直线的方程;若不能,请说明理由.
如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点. (1)求证:平面; (2)求锐二面角的余弦值; (3)若点是上一点,求的最小值.