把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求ξ的分布列.
在平面直角坐标系 x O y 中,已知点 A ( 0 , - 1 ) , B 点在直线 y = - 3 上, M 点满足 M B → / / O A → , M A → · A B → = M B → · B A → , M 点的轨迹为曲线 C .
(1)求 C 的方程; (2) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值.
某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为配方和配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
配方的频数分布表
(1)分别估计用配方,配方生产的产品的优质品率; (2)已知用B配方生成的一件产品的利润(单位:元)与其质量指标值的关系式为, 从用配方生产的产品中任取一件,其利润记为(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)
如图,四棱锥中,底面为平行四边形,,,.
(1)证明:; (2)若,求二面角的余弦值。
等比数列的各项均为正数,且
(1)求数列的通项公式; (2)设 求数列的前项和.
设函数定义在上,,导函数,. (1)求的单调区间和最小值; (2)讨论与的大小关系; (3)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.