如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E,F分别为棱AC,AD的中点.(1)求证:DC平面ABC; (2)设,求三棱锥A-BFE的体积.
B.选修4—2 矩阵与变换 已知矩阵,其中,若点在矩阵的变换下得到点, (1)求实数a的值; (2)求矩阵的特征值及其对应的特征向量.
A.选修4—1 几何证明选讲 在直径是的半圆上有两点,设与的交点是. 求证:
. 已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,2Sn=anan+1+r. (1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由. (2)设,, 若r>c>4,求证:对于一切n∈N*,不等式恒成立.
已知,函数. (1) 如果实数满足,函数是否具有奇偶性?如果有,求出相应的 值,如果没有,说明为什么? (2) 如果判断函数的单调性; (3) 如果,,且,求函数的对称轴或对称中心.