在直接坐标系中,直线的方程为,曲线的参数方程为(为参数) (I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
已知椭圆的中心在原点,焦点在坐标轴上,分别根据下列条件求椭圆的标准方程.(1)长轴、短轴长之比为2∶1,一条准线为x+4=0;(2)离心率为,一条准线为y=3.
设椭圆方程为=1(a>b>0),短轴的一个顶点B与两焦点F1、F2组成的三角形的周长为4+2,且∠F1BF2=,求椭圆方程.
如图所示,F是椭圆的左焦点,P是椭圆上一点,PF⊥x轴,OP∥AB,求椭圆的离心率.
已知上是减函数,且。(1)求的值,并求出和的取值范围。(2)求证。(3)求的取值范围,并写出当取最小值时的的解析式。