高中数学

以下四个命题中:
为两个定点,为非零常数。,则动点的轨迹方程为双曲线。
过定圆上一定点作圆的动点弦为坐标原点,若则动点的轨迹为椭圆。
方程的两根可分别作为椭圆与双曲线的离心率。
双曲线与椭圆有共同的焦点。
其中真命题的序号为         。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

正方体ABCDA1B1C1D1中,下列四个命题:
①若在直线上运动时,三棱锥的体积不变;
②若在直线上运动时,直线与平面所成的角的大小不变;
③若在直线上运动时,直线所成的角的大小不变;
④若是平面A1B1C1D1上到直线A1D1与直线距离相等的点,则点的轨迹是抛物线.
其中真命题的编号是_____________.(写出所有真命题的编号)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给出下列四个结论:
①函数)与函数)的定义域相同;
②函数是奇函数;③函数在区间上是减函数;
④函数是周期函数。
其中正确结论的序号是______________。(填写你认为正确的所有结论序号)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给定下列四个命题:
①如果一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;
②垂直于同一直线的两直线相互平行;
③如果一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
④如果两个平面垂直,那么在一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
则其中真命题的序号是           

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下列四个命题 ①,
,是有理数.
,使
,使
所有真命题的序号是_____________________.        

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

老师给出一个函数y=f(x),甲、乙、丙、丁四个学生各给出这个函数的一个性质.
甲:对于R,都有f(1+x)=f(1x);
乙:f(x)在(,0]上是减函数;
丙:f(x)在(0,+)上是增函数;
丁:f(0)不是函数的最小值.
现已知其中恰有三个说得正确,则这个函数可能是                   (只需写出一个这样的函数即可).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给出下列四个命题:
(1)函数)与函数)的定义域相同;
(2)函数的值域相同;
(3)函数的单调递增区间为
其中正确命题的序号是__________(把你认为正确的命题序号都填上)。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下列说法正确的是___________.
(1)函数y=kx+b(k0,xR)有且只有一个零点(2)二次函数在其定义域内可能无零点 (3)指数函数在其定义域内没有零点             (4)对数函数在其定义域内只有一个零点
(5)幂函数在其定义域内有可能有零点,也可能无零点;(6)单调函数在其定义域内的零点至多有一个。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

老师给出一个函数,四个学生甲、乙、丙、丁各指出这个函数的一个性质:
甲:对于任意x∈R,都有f(1+x)=f(1-x);
乙:在(-∞,0]上,函数f(x)单调递减;
丙:在(0,+∞)上,函数f(x)单调递增;
丁:f(0)不是函数f(x)的最小值。
如果其中有三个人说得正确,则这个函数f(x)的解析式可能是_______。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

命题:方程有一正根和一负根,命题:函数的图象与轴有公共点。若命题“”为真命题,而命题“”为假命题,则实数的取值范围是           

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给出下列命题:
①函数是偶函数;
②若是第一象限的角,且,则
③函数图象的一条对称轴方程为
④在三角形中,的充要条件是
⑤函数的一个对称中心为
其中正确命题的序号是_______________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知均为实数,有下列命题:①若 ;②若;③若,则。其中正确的命题 是              

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下列几个命题
①方程的有一个正实根,一个负实根,则
②函数是偶函数,但不是奇函数。
③函数的值域是,则函数的值域为
④设函数定义域为R,则函数的图象关于轴对称。
⑤一条曲线和直线的公共点个数是,则的值不可能是1。
其中正确的有___________________。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给出下列五个命题:
①函数的图象与直线可能有两个不同的交点;
②函数与函数是相等函数;
③对于指数函数与幂函数,总存在,当 时,有成立;
④对于函数,若有,则内有零点. 
⑤已知是方程的根,是方程的根,则.
其中正确的序号是       .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下列命题:
成等比数列的充分不必要条件;
②若角满足,则
③若不等式的解集非空,则必有
④“”是指 “
⑤命题“存在”的否定是“对任意的”.
其中正确的命题的序号是(把你认为正确的命题的序号都填上).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学截面及其作法填空题