设函数。
(1)求函数的最小正周期;
(2)设函数对任意,有,且当时, ,求函数在上的解析式.
(本小题满分12分)若向量 =,在函数 +的图象中,对称中心到对称轴的最小距离为,且当时, 的最大值为.
(1)求函数的解析式;
(2)求函数的单调递增区间.
(本题满分14分)在中,分别是角,,的对边,且
.
(I)若函数求的单调增区间;
(II)若,求面积的最大值.
(本小题满分12分)已知函数(),直线,是图象的任意两条对称轴,且的最小值为.
(I)求的表达式;
(Ⅱ)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数的图象,若关于的方程,在区间上有且只有一个实数解,求实数的取值范围.
已知:在中, 、、分别为角、、所对的边,且角为锐角,
(Ⅰ)求的值;
(Ⅱ)当,时,求及的长.
(本小题满分12分)
已知函数,.
(1)求函数的最小正周期和单调递增区间;
(2)求函数在区间上的最小值和最大值,并求出取得最值时的值.
(本题满分12 分)
(1)计算,
(2)已知,求sin的值。