(本小题满分12分)已知函数,.(1)求函数的最小正周期和单调递增区间;(2)求函数在区间上的最小值和最大值,并求出取得最值时的值.
(本小题满分12分)有一种新型的洗衣液,去污速度特别快.已知每投放且个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.根据经验,当水中洗衣液的浓度不低于(克/升)时,它才能起到有效去污的作用.(Ⅰ)若投放个单位的洗衣液,分钟时水中洗衣液的浓度为(克/升),求的值 ;(Ⅱ)若投放个单位的洗衣液,则有效去污时间可达几分钟?
(本小题满分12分)在中,内角所对的边分别为,已知,.(Ⅰ)求的值;(Ⅱ)求的值.
(本小题满分14分)已知,函数.(Ⅰ)当时,求曲线在点处的切线的斜率;(Ⅱ)讨论的单调性;(Ⅲ)是否存在实数,使得方程有两个不等的实数根?若存在,求出的取值范围;若不存在,说明理由.
(本小题满分13分)已知数列, 满足条件:, .(Ⅰ)求证数列是等比数列,并求数列的通项公式;(Ⅱ)求数列的前项和,并求使得对任意都成立的正整数的最小值.
(本小题满分12分)如图,某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的小矩形绿化区,这三块绿化区四周和绿化区之间均设有1米宽的走道,已知三块绿化区的总面积为200平方米,求该矩形区域ABCD占地面积的最小值.