已知函数相邻两个对称轴之间的距离是,且满足,
(1)求的单调递减区间;
(2)在钝角△ABC中,a、b、c分别为角A、B、C的对边,sinB=,求△ABC的面积。
如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙、的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得仓库的面积尽可能大,记,问当为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?
已知向量.记
(I)求的最小正周期及单调增区间;
(Ⅱ)在中,角,,的对边分别为若,,,求的值.
已知函数,其中常数.
(1)令,求函数的单调区间;
(2)令,将函数的图像向左平移个单位,再往上平移个单位,得到函数的图像.对任意的,求在区间上零点个数的所有可能值.
若函数,非零向量,我们称为函数的“相伴向量”,为向量的“相伴函数”.
(1)已知函数的最小正周期为,求函数的“相伴向量”;
(2)记向量的“相伴函数”为,将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象上所有点向左平移个单位长度,得到函数,若,求的值;
(3)对于函数,是否存在“相伴向量”?若存在,求出“相伴向量”;
若不存在,请说明理由.
给出下列命题:
(1)存在实数,使 (2)存在实数,使
(3)函数是偶函数 (4)若是第一象限的角,且,则.其中正确命题的序号是________________________________