高中数学

)设为奇函数,为常数.
(1)求的值;
(2)判断在区间(1,+∞)内的单调性,并证明你的判断正确;
(3)若对于区间 [3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的两个极值点分别为,且,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是(  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在区间上有定义, 若, 都有, 则称是区间的向上凸函数;若, 都有, 则称是区间的向下凸函数. 有下列四个判断:
①若是区间的向上凸函数,则是区间的向下凸函数;
②若都是区间的向上凸函数, 则是区间的向上凸函数;
③若在区间的向下凸函数且,则是区间的向上凸函数;
④若是区间的向上凸函数,, 则有

其中正确的结论个数是(    )

A.1 B.2 C.3 D.4
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函 数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,用符号表示不超过的最大整数。函数有且仅有3个零点,则的取值范围是__________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中
(1)若是函数的极值点,求实数的值;
(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求在点处的切线方程;
(Ⅱ)若存在,满足成立,求的取值范围;
(Ⅲ)当时,恒成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)若,函数是R上的奇函数,当,(i)求实数
的值;(ii)当时,求的解析式;
(2)若方程的两根中,一根属于区间,另一根属于区间,求实数的取 值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

定义域为的偶函数,对,有,且当 时,,若函数上至少有三个零点,则的取值范围是(   )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若函数满足,且在定义域内恒成立,求实数的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

是定义在上且周期为2的函数,在区间上,其中.若,则的值为        

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数(其中).
(Ⅰ)求函数的极值;
(Ⅱ)若函数在区间内有两个零点,求正实数a的取值范围;(Ⅲ)求证:当时,.(说明:e是自然对数的底数,e=2.71828…)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数y=esin x(-π≤x≤π)的大致图象为 (  ).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 ,给出下列命题:
(1)必是偶函数;
(2)当时,的图象关于直线对称;
(3)若,则在区间上是增函数;
(4)有最大值.
其中正确的命题序号是(     )

A.(3) B.(2)(3) C.(3)(4) D.(1)(2)(3)
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若关于的方程有四个不同的实数解,则的取值范围为         (  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学函数迭代试题