(本小题满分13分)设,函数,函数,.
(Ⅰ)当时,写出函数零点个数,并说明理由;
(Ⅱ)若曲线与曲线分别位于直线的两侧,求的所有可能取值.
(本小题满分12分)定义的零点为的不动点,已知函数
.
(Ⅰ)当时,求函数的不动点;
(Ⅱ)对于任意实数,函数恒有两个相异的不动点,求实数的取值范围;
(Ⅲ)若函数只有一个零点且,求实数的最小值.
(本小题共14分) 已知点,,动点P满足,记动点P的轨迹为W.
(Ⅰ)求W的方程;
(Ⅱ)直线与曲线W交于不同的两点C,D,若存在点,使得成立,求实数m的取值范围.
(本小题满分13分)已知函数.
(Ⅰ)当时,函数恰有3个零点,求实数的取值范围;
(Ⅱ)若对任意,有恒成立,求的取值范围.
(本小题满分12分)已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)求函数的零点;
(Ⅲ)若函数的最小值为-4,求的值.
已知命题p方程2x2+ax﹣a2=0在[﹣1,1]上有解;命题q:只有一个实数x0满足不等式x02+2ax0+2a≤0,若命题“p∨q”是假命题,求实数a的取值范围.