高中数学

(本小题满分12分)已知
(1)当,时,若不等式恒成立,求的范围;
(2)试证函数内存在唯一零点.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分15分)已知函数
(1)若a=1,试判断并用定义证明函数f(x)在[1,4]上的单调性;
(2)当时,求函数f(x)的最大值的表达式M(a);
(3)是否存在实数a,使得f(x)=3有且仅有3个不等实根,且它们成等差数列,若存在,求出所有a的值,若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设关于的方程有两个实根,函数.
(1)求的值;
(2)判断在区间的单调性,并加以证明;
(3)若均为正实数,证明:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数为常数,为自然对数的底)
(1)当时,求的单调区间;
(2)若函数上无零点,求的最小值;
(3)若对任意的,在上存在两个不同的使得成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数,不等式都成立.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数
(1)设,证明:在区间内存在唯一的零点;
(2)设,若对任意,有,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)求函数的极值;
(2)设函数若函数上恰有两个不同零点,求实数 的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知命题p:方程有两个不等的负根;命题q:方程无实根.若为真,为假,试求实数m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600无后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需要各种开支2 000元.

(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数.
(1)若在其定义域内是增函数,求b的取值范围;
(2)若,若函数在 [1,3]上恰有两个不同零点,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知命题p:函数上单调递减.
⑴求实数m的取值范围;
⑵命题q:方程内有一个零点.若p或q为真,p且q为假,求实数m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于定义域为的函数,若同时满足:
内单调递增或单调递减;
②存在区间[],使上的值域为
那么把函数)叫做闭函数.
(1) 求闭函数符合条件②的区间
(2) 若是闭函数,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交,从而得到五边形的市民健身广场,设
(1)将五边形的面积表示为的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,某公园要在一块绿地的中央修建两个相同的矩形的池塘,每个面积为10000米2,池塘前方要留4米宽的走道,其余各方为2米宽的走道,问每个池塘的长宽各为多少米时占地总面积最少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中为自然对数的底数.
(Ⅰ)设是函数的导函数,求函数在区间上的最小值;
(Ⅱ)若,函数在区间内有零点,求的取值范围

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学不定方程和方程组解答题