设函数 .
(1)当
时,求函数
在
上的最小值
的表达式;
(2)已知函数
在
上存在零点,
,求
的取值范围.
设为实数,函数.
(1)若,求的取值范围;
(2)讨论的单调性;
(3)当时,讨论在区间内的零点个数.
(本题满分14分,第(1)、(2)小题各3分;第(3)、(4)小题各4分)
请你指出函数的基本性质(不必证明),并判断以下四个命题的正确性,必要时可直接运用有关其基本性质的结论加以证明.
(1)当时,等式恒成立;
(2)若,则一定有;
(3)若,方程有两个不相等的实数解;
(4)函数在上有三个零点.
(本小题满分15分)函数,
(1)若,试讨论函数的单调性;
(2)若,试讨论的零点的个数;
(本小题满分14分)已知函数,对任意的,满足,其中为常数.
(1)若的图像在处切线过点,求的值;
(2)已知,求证:;
(3)当存在三个不同的零点时,求的取值范围.
(本小题满分12分)已知函数f(x)=ax-l+lnx,其中a为常数.
(Ⅰ)当时,若f(x)在区间(0,e)上的最大值为一4,求a的值;
(Ⅱ)当时,若函数存在零点,求实数b的取值范围.
已知函数().
(Ⅰ)若函数在定义域内单调递增,求实数的取值范围;
(Ⅱ)若,且关于的方程在上恰有两个不等的实根,求实数的取值范围;
(Ⅲ)设各项为正数的数列满足,(),求证:.
已知二次函数的最小值为且关于的不等式的解集为,
(1)求函数的解析式;
(2)求函数的零点个数.
设函数在点处的切线方程为.
(1)求实数及的值;
(2)求证:对任意实数,函数有且仅有两个零点.
(本小题满分12分)已知函数
(1)若直线过点,并且与曲线相切,求直线的方程;
(2)设函数在上有且只有一个零点,求的取值范围。(其中为自然对数的底数)
(本小题满分13分)已知函数,,,,且.
(Ⅰ)当,,时,若方程恰存在两个相等的实数根,求实数的值;
(Ⅱ)求证:方程有两个不相等的实数根;
(Ⅲ)若方程的两个实数根是,试比较与的大小并说明理由.
如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近 的一点,为圆周上靠近 的一点,且∥.现在准备从经过到建造一条观光路线,其中到是圆弧,到是线段.设,观光路线总长为.
(1)求关于的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.
已知函数,,.
(1)若函数在区间内恰有两个零点,求实数的取值范围;
(2)若,设函数在区间上的最大值为,最小值为,记,求函数在区间上的最小值.