如图所示,某公园要在一块绿地的中央修建两个相同的矩形的池塘,每个面积为10000米2,池塘前方要留4米宽的走道,其余各方为2米宽的走道,问每个池塘的长宽各为多少米时占地总面积最少?
(拓展深化)如图①所示,△ABC内接于⊙O,AB=AC,D是BC边上的一点,E是直线AD和△ABC外接圆的交点.(1)求证:AB2=AD·AE;(2)如图②所示,当D为BC延长线上的一点时,第(1)题的结论成立吗?若成立,请证明;若不成立,请说明理由.
如图所示,AB是⊙O的直径,弦AC=3 cm,BC=4 cm,CD⊥AB,垂足为D,求AD、BD和CD的长.
定义在R上的函数同时满足以下条件:①在(0,1)上是减函数,在(1,+∞)上是增函数;②是偶函数;③在x=0处的切线与直线y=x+2垂直.(1)求函数的解析式;(2)设g(x)=,若存在实数x∈[1,e],使g(x)<,求实数m的取值范围。
已知动点P与平面上两定点连线的斜率的积为定值.(1)试求动点P的轨迹方程C.(2)设直线与曲线C交于M、N两点,当|MN|=时,求直线l的方程.
已知是等差数列,前n项和是,且,,(1)求数列的通项公式;(2)令=·2n,求数列的前n项和