某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券.(I)求家具城恰好返还该顾客现金200元的概率;(II)(文科)求家具城至少返还该顾客现金200元的概率.(理科)设该顾客有张奖券中奖,求的分布列,并求的数学期望E.
设函数f(x)=|2x+1|-|x-2|.(Ⅰ)求不等式的解集;(Ⅱ)若{x|f(x)≥-t}∩{y|0≤y≤1}≠,求实数t的取值范围.
已知在直角坐标系xOy中,圆锥曲线C的参数方程为(θ为参数),直线l经过定点P(2,3),倾斜角为.(Ⅰ)写出直线l的参数方程和圆的标准方程;(Ⅱ)设直线l与圆相交于A,B两点,求|PA|·|PB|的值.
如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC.(Ⅰ)求证:BE=2AD;(Ⅱ)当AC=1,EC=2时,求AD的长.
已知函数f(x)=ln-a+x(a>0).(Ⅰ)若=,求f(x)图像在x=1处的切线的方程;(Ⅱ)若的极大值和极小值分别为m,n,证明:.
已知椭圆长轴的左右端点分别为A,B,短轴的上端点为M,O为椭圆的中心,F为椭圆的右焦点,且·=1,||=1.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线l交椭圆于P,Q两点,问:是否存在直线l,使得点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.