某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券.(I)求家具城恰好返还该顾客现金200元的概率;(II)(文科)求家具城至少返还该顾客现金200元的概率.(理科)设该顾客有张奖券中奖,求的分布列,并求的数学期望E.
已知数列{an}的前n项和Sn满足Sn+1=kSn+2(n∈N*),且a1=2,a2=1. (1)求k的值和Sn的表达式; (2)是否存在正整数m,n,使得<成立?若存在,求出这样的正整数;若不存在,请说明理由.
设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列. (1)求a1的值; (2)求数列{an}的通项公式; (3)证明:对一切正整数n,有++…+<.
设数列{an}满足a1+3a2+32a3+…+3n-1an=,n∈N*. (1)求数列{an}的通项; (2)设bn=,求数列{bn}的前n项和Sn.
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足=an. (1)求Sn的表达式; (2)设bn=,求{bn}的前n项和Tn.
[2014高考真题] 已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式; (2)令bn=(-1)n-1,求数列{bn}的前n项和Tn.