(本小题满分12分)已知.(1)当,时,若不等式恒成立,求的范围;(2)试证函数在内存在唯一零点.
已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点、的距离之和等于4. (1)写出椭圆的方程和焦点坐标. (2)过点的直线与椭圆交于两点、,当的面积取得最大值时,求直线的方程.
设,若,,. (1)若,求的取值范围; (2)判断方程在内实根的个数.
已知函数. (1)若,求的单调区间及的最小值; (2)若,求的单调区间; (3)试比较与的大小,并证明你的结论.
已知抛物线的顶点在坐标原点,焦点在轴上,且过点. (Ⅰ)求抛物线的标准方程; (Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
在等腰梯形中,,,,是的中点.将梯形绕旋转,得到梯形(如图). (1)求证:平面; (2)求证:平面; (3)求二面角的余弦值.