(本小题14分)已知函数f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定义域为区间[-1,1].(1)求g(x)的解析式;(2)判断g(x)的单调性.
已知:函数f(x)=ax(0<a<1),
(Ⅰ)若f(x)=2,求f(3x);
(Ⅱ)若f(2x-3x+1)f(x+2x-5),求x的取值范围。
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)判断函数是否是有界函数,请写出详细判断过程;
(2)试证明:设,若在上分别以为上界,
求证:函数在上以为上界;
(3)若函数在上是以3为上界的有界函数,
求实数的取值范围.