已知函数(且)(1)求的定义域和值域(2)判断的奇偶性,并证明(3)当时,若对任意实数,不等式恒成立,求实数的取值范围
已知命题在[-1,1]上有解,命题q:只有一个实数x满足:(I)若的图象必定过两定点,试写出这两定点的坐标 (只需填写出两点坐标即可);(II)若命题“p或q”为假命题,求实数a的取值范围.
已知函数时都取得极值.(I)求a、b的值与函数的单调区间;(II)若对的取值范围.
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点.(1)证明平面EDB;(2)求EB与底面ABCD所成的角的正切值.
若=,=,其中>0,记函数f(x)=2·,f(x)图象中相邻两条对称轴间的距离为,(1)求的值;(2)求f(x)的单调减区间和f(x)的最大值及取得最大值时x的取值集合.