已知x[-3,2],求f(x)=的最小值与最大值。
在平面直角坐标系中,若,且,(1)求动点的轨迹的方程;(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值。
若F、F为双曲线的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足;.(1)求该双曲线的离心率;(2)若该双曲线过N(2,),求双曲线的方程;(3)若过N(2,)的双曲线的虚轴端点分别为B、B(B在y轴正半轴上),点A、B在双曲线上,且时,直线AB的方程.
已知椭圆的一条准线方程是其左、右顶点分别是A、B;双曲线的一条渐近线方程为3x-5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若. 求证:
如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:①②③求点G的横坐标的取值范围.
甲乙两公司生产同一种新产品,经测算,对于函数,,及任意的,当甲公司投入万元作宣传时,乙公司投入的宣传费若小于万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入万元作宣传时,甲公司投入的宣传费若小于万元,则甲公司有失败的危险,否则无失败的危险. 设甲公司投入宣传费x万元,乙公司投入宣传费y万元,建立如图直角坐标系,试回答以下问题:(1)请解释;(2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费?(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入万元,乙在上述策略下,投入最少费用;而甲根据乙的情况,调整宣传费为;同样,乙再根据甲的情况,调整宣传费为如此得当甲调整宣传费为时,乙调整宣传费为;试问是否存在,的值,若存在写出此极限值(不必证明),若不存在,说明理由.