高中数学

如图,在四面体中,,点分别是的中点.

求证:(1)直线
(2)平面

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在正方体AC¢中,E、F、G、P、Q、R分别是所在棱AB、BC、BB¢、A¢D¢、D¢C¢、DD¢的中点,求证:平面PQR∥平面EFG。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图边长为1的正方体

(1)求证:直线
(2)求直线与平面所成角的正切值。
(3)求三棱锥的体积。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,长方体ABCD—A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.

(1)求证:直线∥平面
(2)求证:平面平面
(3)求三棱锥D—PAC的体积。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图(1),在三角形ABC中,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.

(1)求证:平面CMN;
(2)求点M到平面CAN的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥平面中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在多面体中,底面是边长为的的菱形,,四边形是矩形,平面平面分别是的中点.

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面,底面是梯形,其中
交于点边上的点,且,已知

(1)求平面与平面所成锐二面角的正切;
(2)已知上一点,且平面,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在七面体ABCDMN中,四边形ABCD是边长为2的正方形,平面ABCD,平面ABCD,且

(1)在棱AB上找一点Q,使QP//平面AMD,并给出证明;
(2)求平面BNC与平面MNC所成锐二面角的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点.

(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图:是直径为的半圆,为圆心,上一点,且.,且的中点,的中点,上一点,且.

(Ⅰ) 求证:∥平面
(Ⅱ)求平面与平面所成二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面,底面是梯形,其中交于点边上的点,且,已知,

(1)求平面与平面所成锐二面角的正切;
(2)已知上一点,且平面,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的平面角的余弦值..

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.
(1)求证:平面
(2)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(3)求二面角的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题