高中数学

如图甲,⊙的直径,圆上两点在直径的两侧,使.沿直径折起,使两个半圆所在的平面互相垂直(如图乙),的中点,的中点.上的动点,根据图乙解答下列各题:

(1)求点到平面的距离;
(2)求证:不论点在何位置,都有
(3)在弧上是否存在一点,使得∥平面?若存在,试确定点的位置;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,侧棱⊥底面是棱的中点.

(1)求证:
(2)设点是线段上的一点,且方向上的射影为,记与面所成的角为,问:为何值时,取最大值?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱柱的侧面是边长为的正方形,侧面侧面的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)在线段上是否存在一点,使二面角,若存在,求的长;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥平面中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.
(1)求证:平面
(2)侧棱上是否存在点,使得平面?若存在,指出点的位置并证明;若不存在,请说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形ABCD所在的平面与三角形CDE所在的平面交于CD, AE平面CDE.

求证:(1)AB//平面CDE;
(2)CD平面ADE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是正方形,侧棱⊥底面的中点.

(Ⅰ)证明://平面
(Ⅱ)求二面角的平面角的余弦值;
(Ⅲ)在棱上是否存在点,使⊥平面?证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面是正方形,侧棱底面的中点.

(1)证明:平面
(2)求直线与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(1)求证:∥平面
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直三棱柱中,分别为中点,.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF.

(1)若G为FC的中点,证明:AF//平面BDG;
(2)求平面ABF与平面BCF夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,底面,点的中点. 

(Ⅰ)求证:
(Ⅱ)求证:∥平面
(Ⅲ)设,在线段上是否存在点,使得?若存在,确定点的位置;                         若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,的中点,的中点.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求证:∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题