(本小题满分12分)如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.(1)求证:平面;(2)侧棱上是否存在点,使得平面?若存在,指出点的位置并证明;若不存在,请说明理由。
设数列的前项和为.已知,,.(Ⅰ)求数列的通项公式;(Ⅱ)记为数列的前项和,求.
在长方体中,,,为中点.(Ⅰ)证明:;(Ⅱ)求与平面所成角的正弦值;(Ⅲ)在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.
抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求的分布列和数学期望.
已知函数.(Ⅰ)求的定义域及最小正周期;(Ⅱ)求在区间上的最值.
如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON