如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON
设是公差不为零的等差数列,为其前项和,满足且、、成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足:,,为数列的前项和,问是否存在正整数,使得成立?若存在,求出;若不存在,请说明理由.
设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且(Ⅰ)若过三点的圆恰好与直线相切,求椭圆C的方程;(Ⅱ)在(Ⅰ)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形?如果存在,求出的取值范围;否则,请说明理由.
直四棱柱的底面是菱形,,其侧面展开图是边长为的正方形.、分别是侧棱、上的动点,. (Ⅰ)证明:; (Ⅱ)在棱上,且,若∥平面,求.
已知为实数,,为的导函数.(Ⅰ)若,求在上的最大值和最小值;(Ⅱ)若在和上均单调递增,求的取值范围
某大学为调查来自南方和北方的同龄大学生的身高差异,从2011级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,数据如下(单位:cm): 南方:158,170,166,169,180,175,171,176,162,163;北方:183,173,169,163,179,171,157,175,178,166.(Ⅰ)根据抽测结果,画出茎叶图,并根据你画的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论;(Ⅱ)若将样本频率视为总体的概率,现从来自南方的身高不低于170的大学生中随机抽取3名同学,求其中恰有两名同学的身高低于175的概率.