高中数学

如图,在正方体ABCD-A1B1C1D1中.
 
(1)若E为棱DD1上的点,试确定点E的位置,使平面A1C1E∥B1D; 
(2)若M为A1B上的一动点,求证:DM∥平面D1B1C.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三棱柱中,侧棱与底面垂直,的中点,的交点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在直三棱柱中,,点的中点.

(1)求证:
(2)求证:平面
(3)求异面直线所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,三棱柱中,平面平面,四边形是矩形,分别为的中点.

(1)求证:∥平面
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知直四棱柱的底面是菱形,且为棱的中点为线段的中点.

(1)求证:直线
(2)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,已知空间四边形的每条边和对角线长都等于1,点分别是的中点,计算:

(1)
(2)的长;
(3)异面直线所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在直四棱柱中,底面为等腰梯形,分别是棱的中点.

(1)证明:直线平面
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(1)求证:∥平面
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直三棱柱中,分别为中点,.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF.

(1)若G为FC的中点,证明:AF//平面BDG;
(2)求平面ABF与平面BCF夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,底面,点的中点. 

(Ⅰ)求证:
(Ⅱ)求证:∥平面
(Ⅲ)设,在线段上是否存在点,使得?若存在,确定点的位置;                         若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,的中点,的中点.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求证:∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题