三棱柱中,侧棱与底面垂直,,,是的中点,是与的交点.(Ⅰ)求证:平面;(Ⅱ)求证:平面.
在直角坐标平面内,直线l过点P(1,1),且倾斜角α=.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ. (1)求圆C的直角坐标方程; (2)设直线l与圆C交于A、B两点,求|PA|·|PB|的值.
如图,四边形ABCD是圆的内接四边形,延长BA和CD相交于点P,,. (Ⅰ)求的值; (Ⅱ)若BD为圆的直径,且,求BC的长.
设函数. (1)若,求的单调区间; (2)若当时,,求的取值范围.
已知定点F(3,0)和动点P(x,y),H为PF的中点,O为坐标原点,且满足. (1)求点P的轨迹方程; (2)过点F作直线与点P的轨迹交于A,B两点,点C(2,0).连接AC,BC与直线分别交于点M,N.试证明:以MN为直径的圆恒过点F.
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=. (1)求证:BD⊥平面PAC; (2)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.