高中数学

(本题10分)如图,三棱柱中,侧棱,且侧棱和底面边长均为2,的中点.

(1)求证:; 
(2)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱柱中,侧面⊥底面,底面为直角梯形,其中,中点.

(1)求证:∥平面 ;
(2)求锐二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(满分13分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,


求证:(1)FD∥平面ABC;
(2)AF⊥平面EDB.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在三棱锥中,平面平面分别为的中点.

(1)求证:∥平面
(2)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是菱形,且

(1)求证:
(2)若平面与平面的交线为,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:

(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,在直三棱柱中,AC=BC,D为AB的中点,且

(1)
(2)证明:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三棱柱中,侧棱平面为等腰直角三角形,分别是的中点.

(1)求证:平面
(2)求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(1)求证:∥平面
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直三棱柱中,分别为中点,.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF.

(1)若G为FC的中点,证明:AF//平面BDG;
(2)求平面ABF与平面BCF夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,底面,点的中点. 

(Ⅰ)求证:
(Ⅱ)求证:∥平面
(Ⅲ)设,在线段上是否存在点,使得?若存在,确定点的位置;                         若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,的中点,的中点.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求证:∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题