(本小题满分12分)如图所示,在直三棱柱中,AC=BC,D为AB的中点,且(1);(2)证明:平面
(在正四面体P—ABC中,D,E,F分别是AB、BC、 CA的中点,求证: (1)BC∥平面PDF;(2)BC⊥平面PAE
(本题12分) 设函数. (1) 求函数的单调区间; (2) 若函数在区间(0,2)上单调递减,试求实数的取值范围; (3) 若函数的极小值大于0,试求实数的取值范围.
(本题12分)口袋里放了12个大小完全一样的小球,其中3个是红色的, 4个是白色的,5个是蓝色的,现从袋中任意取出4个小球,求: (1) 取出的小球的颜色至少是两种的概率; (2) 取出的小球的颜色是三种的概率.
(本题12分)七个人排成两排照相,前排3人,后排4人. (1) 求甲在前排,乙在后排的概率; (2)求甲、乙在同一排且相邻的概率; (3) 求甲、乙之间恰好有一人的概率.
(本题12分)已知是定义在R上的函数, 且在(-1,0)和(4,5)上有相同的单调性,在(0,2)和(4,5)上 有相反的单调性. (1) 求的值; (2) 在函数的图象上是否存在一点,使得在点的 切线斜率为?若存在,求出点的坐标;若不存在,请说明理由.