如图甲,⊙的直径,圆上两点在直径的两侧,使,.沿直径折起,使两个半圆所在的平面互相垂直(如图乙),为的中点,为的中点.为上的动点,根据图乙解答下列各题:(1)求点到平面的距离;(2)求证:不论点在何位置,都有⊥;(3)在弧上是否存在一点,使得∥平面?若存在,试确定点的位置;若不存在,请说明理由.
已知函数.(Ⅰ)若为的极值点,求的值;(Ⅱ)若的图象在点()处的切线方程为,求在区间上的最大值;(Ⅲ)当时,若在区间上不单调,求的取值范围.
已知函数.(I)若函数在上是减函数,求实数的取值范围;(II)令,是否存在实数,使得当时,函数的最小值是,若存在,求出实数的值,若不存在,说明理由?(III)当时,证明:.
二次函数满足。(1)求函数的解析式;(2)在区间上,的图象恒在的图象上方,试确定实数的取值范围。
已知函数最小正周期为(1)求的单调递增区间(2)在中,角的对边分别是,满足,求函数的取值范围
已知命题:,命题:,命题为真,命题为假.求实数的取值范围.