北京市东城区高三5月综合练习二理科数学试卷
甲、乙两名同学次数学测验成绩如茎叶图所示,分别表示甲、乙两名同学次数学测验成绩的平均数,分别表示甲、乙两名同学次数学测验成绩的标准差,则有( )
A., | B., |
C., | D., |
来源:2015届北京市东城区高三5月综合练习二理科数学试卷
已知,是简单命题,那么“是真命题”是“是真命题”的( )
A.充分而不必要条件 |
B.必要而不充分条件 |
C.充分必要条件 |
D.既不充分也不必要条件 |
来源:2015届北京市东城区高三5月综合练习二理科数学试卷
为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为,其中(),传输信息为,,,运算规则为:,,,.例如原信息为,则传输信息为.传播信息在传输过程中受到干扰可能导致接收信息出错,则下列信息一定有误的是( )
A. | B. | C. | D. |
来源:2015届北京市东城区高三5月综合练习二理科数学试卷
如图,平面中两条直线和相交于点,对于平面上任意一点,若分别是到直线和的距离,则称有序非负实数对是点的“距离坐标”.
给出下列四个命题:
① 若,则“距离坐标”为的点有且仅有个.
② 若,且,则“距离坐标”为的点有且仅有个.
③ 若,则“距离坐标”为的点有且仅有个.
④ 若,则点的轨迹是一条过点的直线.
其中所有正确命题的序号为 .
来源:2015届北京市东城区高三5月综合练习二理科数学试卷
某校高一年级开设,,,,五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(Ⅰ)求甲同学选中课程且乙同学未选中课程的概率;
(Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.
来源:2015届北京市东城区高三5月综合练习二理科数学试卷
如图,三棱柱的侧面是边长为的正方形,侧面侧面,,,是的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面;
(Ⅲ)在线段上是否存在一点,使二面角为,若存在,求的长;若不存在,说明理由.
来源:2015届北京市东城区高三5月综合练习二理科数学试卷
已知椭圆的中心在原点,焦点在轴上,离心率为,且椭圆上的点到两个焦点的距离之和为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为椭圆的左顶点,过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点.证明:.
来源:2015届北京市东城区高三5月综合练习二理科数学试卷