已知数列的前项和为,且满足,,设,.(Ⅰ)求证:数列是等比数列;(Ⅱ)若,,求实数的最小值;(Ⅲ)当时,给出一个新数列,其中设这个新数列的前项和为,若可以写成 (且)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
已知直线过点,圆:. (1)求截得圆弦长最长时的直线方程; (2)若直线被圆N所截得的弦长为,求直线的方程.
如图,在河的对岸可以看到两个目标物M,N,但不能到达,在河岸边选取相距40米的两个目标物P,Q两点,测得,,,,试求两个目标物M,N之间的距离.
(满分12分) 如图,在正方体中,E、F、G分别为、、的中点,O为与的交点, (1)证明:面 (2)求直线与平面所成角的正弦值.
(满分12分) 求过两直线和的交点且与直线垂直的直线方程.
(满分10分) 已知集合,,求.