已知函数.(Ⅰ)求的定义域及其最大值;(Ⅱ)求在上的单调递增区间.
已知点(0,),椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点. (Ⅰ)求的方程; (Ⅱ)设过点的直线与相交于两点,当的面积最大时,求的方程.
已知 为坐标原点, 为函数 图像上一点,记直线 的斜率 . (Ⅰ) 若函数 在区间 上存在极值,求实数 的取值范围; (Ⅱ) 当 时,不等式 恒成立,求实数 的取值范围.
如图,中,两点分别是线段的中点,现将沿折成直二面角。 (Ⅰ) 求证:; (Ⅱ)求直线与平面所成角的正切值.
已知单调递增的等比数列满足:,且是的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若,,求使成立的正整数的最小值.
在ΔABC中,角A,B,C所对的边分别为a,b,c,已知 (Ⅰ) 求角C的大小; (Ⅱ) 若c=2,求使ΔABC面积最大时,a, b的值.