如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.
(I)求证:B1C∥平面A1BD;
(Ⅱ)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;
(Ⅲ)在(II)的条件下,求二面角B﹣A1C1﹣D的大小.
在直三棱柱ABC﹣A1B1C1中,BC=CC1,AB⊥BC.点M,N分别是CC1,B1C的中点,G是棱AB上的动点.
(Ⅰ)求证:B1C⊥平面BNG;
(Ⅱ)若CG∥平面AB1M,试确定G点的位置,并给出证明.
如图,四边形ABEF是等腰梯形,AB∥EF,AF=BE=2,EF=4,AB=2,ABCD是矩形.AD⊥平面ABEF,其中Q,M分别是AC,EF的中点,P是BM中点.
(1)求证:PQ∥平面BCE;
(2)求证:AM⊥平面BCM;
(3)求点F到平面BCE的距离.
在四棱锥中,平面,底面为直角梯形,,,且为的中点.
(1)求证:平面;
(2)求直线与平面所成角的正切值.
如图,已知平面ABC,AB=AC=3,,, 点E,F分别是BC, 的中点.
(I)求证:EF 平面 ;
(II)求证:平面平面.
(III)求直线 与平面所成角的大小.
如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:
(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.
如图,在三棱锥中,已知是正三角形,平面,,为的中点,在棱上,且,
(1)求证:平面;
(2)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由;
如图,在三棱锥中,,,点,分别为, 的中点.
(1)求证:直线平面;
(2)求证:.
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面,是的中点.
(1)求证:∥平面;
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
如图,已知直三棱柱中,,、分别为、中点,.
(1)求证:平面;
(2)求证:平面平面