以下茎叶图记录了甲、乙两组四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示。
(1)如果X=8,求乙组同学植树棵数的平均数和标准差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率。
在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的S大小为多少?并说明S的统计学意义.
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50)、[50,60)、…、[90,100)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100)记2分,求抽取结束后的总记分至少为2分的概率.
某电视台2012年举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:
赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。
(Ⅰ)分别求出甲、乙两班的大众评审的支持票数的中位数、众数与极差;
从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率.
某班50名学生在一次数学考试中,成绩都属于区间[60,110],将成绩按如下方式分成五组:第一组[60,70);第二组[70,80);第三组[80,90);第四组[90,100);第五组[100,110],部分频率分布直方图如图7所示,及格(成绩不小于90分)的人数为20.
(Ⅰ)请补全频率分布直方图;
(Ⅱ)由此估计该班的平均分;
(Ⅲ)在成绩属于[60,70)∪[100,110]的学生中任取两人,成绩记为,求的概率.
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙.
(1)假设,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成小块,即,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:
甲 |
||||||||
乙 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
(本小题满分12分)某市教育局责成基础教育处调查本市学生的身高情况,基础教育处随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示:
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从各班身高最高的5名同学中各取一人,求甲班同学身高不低于乙班同学的概率.
某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分(保留小数点后2位).
某工厂对某产品的产量与单位成本的资料分析后有如下数据:
月 份 |
1 |
2 |
3 |
4 |
5 |
6 |
产量x千件 |
2 |
3 |
4 |
3 |
4 |
5 |
单位成本y元/件 |
73 |
72 |
71 |
73 |
69 |
68 |
(Ⅰ)求单位成本y与月产量x之间的线性回归方程.(其中已计算得:,结果保留两位小数)
(Ⅱ)当月产量为12千件时,单位成本是多少?
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
次数 |
1 |
2 |
3 |
4 |
5 |
6 |
甲 |
27 |
38 |
30 |
37 |
35 |
31 |
乙 |
33 |
29 |
38 |
34 |
28 |
36 |
(1)画出茎叶图,由茎叶图判断哪位选手的成绩较稳定?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加
比赛更合适.
以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次.
(1)试比较甲、乙两名运动员射击水平的稳定性;
(2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望.
(本小题满分10分)某地区100位居民的人均月用水量(单位:t)的频率分布直方图及频数分布表如下:
分组 |
频数 |
[0,0.5) |
4 |
[0.5,1) |
8 |
[1,1.5) |
15 |
[1.5,2) |
22 |
[2,2.5) |
25 |
[2.5,3) |
14 |
[3,3.5) |
6 |
[3.5,4) |
4 |
[4,4.5] |
2 |
合计 |
100 |
(1)根据频率分布直方图估计这组数据的众数与平均数;
(2)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?
如图是校园“十佳歌手”大奖赛上,七位评委为甲、乙两位选手打出的分数的茎叶图.
(1)写出评委为乙选手打出分数数据的众数,中位数;
(2)求去掉一个最高分和一个最低分后,两位选手所剩数据的平均数和方差,根据结果比较,哪位选手的数据波动小?
佛山某中学高三(1)班排球队和篮球队各有名同学,现测得排球队人的身高(单位:)分别是:、、、、、、、、、,篮球队人的身高(单位:)分别是:、、、、、、、、、.
(Ⅰ)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);
(Ⅱ)现从两队所有身高超过的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?
学校为了对某课题进行研究,用分层抽样方法从三个年级高一、高二、高三的相关老师中,抽取若干人组成研究小组,有关数据见下表(单位:人).
年级 |
相关人数 |
抽取人数 |
高一 |
18 |
x |
高二 |
36 |
2 |
高三 |
54 |
y |
(1)求x,y;
(2)若从高二、高三抽取的人中选2人做专题发言,求这2人都来自高三的概率。