以下茎叶图记录了甲、乙两组四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示。(1)如果X=8,求乙组同学植树棵数的平均数和标准差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率。
如图,某商业中心O有通往正东方向和北偏东30º方向的两条街道,某公园P位于商业中心北偏东角(),且与商业中心O的距离为公里处,现要经过公园P修一条直路分别与两条街道交汇于A,B两处。 (1)当AB沿正北方向时,试求商业中心到A,B两处的距离和; (2)若要使商业中心O到A,B两处的距离和最短,请确定A,B的最佳位置。
在三棱锥P-ABC中,D为AB的中点。(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。
已知函数部分图象如图所示。(1)求函数的解析式;(2)当时,求函数的值域。
对于给定的大于1的正整数n,设,其中,且记满足条件的所有x的和为,(1)求(2)设,求
射击测试有两种方案,方案1:先在甲靶射击一次,以后都在乙靶射击;方案2:始终在乙靶射击,某射手命中甲靶的概率为,命中一次得3分;命中乙靶的概率为,命中一次得2分,若没有命中则得0分,用随机变量表示该射手一次测试累计得分,如果的值不低于3分就认为通过测试,立即停止射击;否则继续射击,但一次测试最多打靶3次,每次射击的结果相互独立。(1)如果该射手选择方案1,求其测试结束后所得分的分布列和数学期望E;(2)该射手选择哪种方案通过测试的可能性大?请说明理由。