(本小题满分12分)某市教育局责成基础教育处调查本市学生的身高情况,基础教育处随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示:(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从各班身高最高的5名同学中各取一人,求甲班同学身高不低于乙班同学的概率.
(本小题满分16分)如图,有一个长方形地块ABCD,边AB为2km, AD为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位: ). (1)求S关于t的函数解析式,并指出该函数的定义域; (2)是否存在点P,使隔离出的△BEF面积S超过3 ?并说明理由.
(本小题满分14分)在平面直角坐标系xOy中,己知点 ,C, D分别为线段OA, OB上的动点,且满足AC=BD. (1)若AC=4,求直线CD的方程; (2)证明:OCD的外接圆恒过定点(异于原点O).
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC. (1)若ABBC,CPPB,求证:CPPA: (2)若过点A作直线⊥平面ABC,求证://平面PBC.
(本小题满分14分)己知向量 , . (1)若 ,求 的值: (2)若 ,且 ,求 的值.
若实数满足,则的最小值为_______.