某电视台举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:
赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。
1、从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率;
2、电视台决定,复赛票数不低于85票的选手将成为电视台的“签约歌手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成为‘签约歌手’与选择的导师有关?
|
甲班 |
乙班 |
合计 |
签约歌手 |
|
|
|
末签约歌手 |
|
|
|
合计 |
|
|
|
下面临界值表仅供参考:
P(K2≥k) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
参考公式:K2= ,其中
某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段,…后画出如下频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分.
(本小题满分14分)下面的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:分).已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.
(1)求,的值;
(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率;
(3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).
(本小题满分13分)为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如下所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两个网站哪个更受欢迎?并说明理由。
(理科)(本小题满分12分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:
PM2.5日均值 (微克/立方米) |
[25,35] |
(35,45] |
(45,55] |
(55,65] |
(65,75] |
(75,85] |
频数 |
3 |
1 |
1 |
1 |
1 |
3 |
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级。(精确到整数)
)为了了解中学生的身高情况,对某校中学生同年龄的若干名女生的身高进行了测量,将所得数据整理后,画出频率分布直方图(如图),已知图中从左到右五个小组的频率分别为0.017,0.050,0.100,0.133,0.300,第三小组的频数为6(单位:cm)
(1)参加这次测试的学生人数是多少?
(2)身高在哪个范围内的学生人数最多?这一范围内的人数是多少?
(3)如果本次测试身高在154.5 cm以上的为良好,试估计该校学生身高良好率是多少?
某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.
组别 |
分组 |
回答正确的人数 |
回答正确的人数占本组的概率 |
第1组 |
[15,25) |
5 |
0.5 |
第2组 |
[25,35) |
0.9 |
|
第3组 |
[35,45) |
27 |
|
第4组 |
[45,55) |
0.36 |
|
第5组 |
[55,65) |
3 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
(理科)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:
PM2.5日均值 (微克/立方米) |
[25,35] |
(35,45] |
(45,55] |
(55,65] |
(65,75] |
(75,85] |
频数 |
3 |
1 |
1 |
1 |
1 |
3 |
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级。(精确到整数)
某工厂对某产品的产量与单位成本的资料分析后有如下数据:
月 份 |
1 |
2 |
3 |
4 |
5 |
6 |
产量x千件 |
2 |
3 |
4 |
3 |
4 |
5 |
单位成本y元/件 |
73 |
72 |
71 |
73 |
69 |
68 |
(Ⅰ)求单位成本y与月产量x之间的线性回归方程.(其中已计算得:,结果保留两位小数)
(Ⅱ)当月产量为12千件时,单位成本是多少?
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
次数 |
1 |
2 |
3 |
4 |
5 |
6 |
甲 |
27 |
38 |
30 |
37 |
35 |
31 |
乙 |
33 |
29 |
38 |
34 |
28 |
36 |
(1)画出茎叶图,由茎叶图判断哪位选手的成绩较稳定?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加
比赛更合适.
以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次.
(1)试比较甲、乙两名运动员射击水平的稳定性;
(2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望.
(本小题满分10分)某地区100位居民的人均月用水量(单位:t)的频率分布直方图及频数分布表如下:
分组 |
频数 |
[0,0.5) |
4 |
[0.5,1) |
8 |
[1,1.5) |
15 |
[1.5,2) |
22 |
[2,2.5) |
25 |
[2.5,3) |
14 |
[3,3.5) |
6 |
[3.5,4) |
4 |
[4,4.5] |
2 |
合计 |
100 |
(1)根据频率分布直方图估计这组数据的众数与平均数;
(2)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?
如图是校园“十佳歌手”大奖赛上,七位评委为甲、乙两位选手打出的分数的茎叶图.
(1)写出评委为乙选手打出分数数据的众数,中位数;
(2)求去掉一个最高分和一个最低分后,两位选手所剩数据的平均数和方差,根据结果比较,哪位选手的数据波动小?
佛山某中学高三(1)班排球队和篮球队各有名同学,现测得排球队人的身高(单位:)分别是:、、、、、、、、、,篮球队人的身高(单位:)分别是:、、、、、、、、、.
(Ⅰ)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);
(Ⅱ)现从两队所有身高超过的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?
学校为了对某课题进行研究,用分层抽样方法从三个年级高一、高二、高三的相关老师中,抽取若干人组成研究小组,有关数据见下表(单位:人).
年级 |
相关人数 |
抽取人数 |
高一 |
18 |
x |
高二 |
36 |
2 |
高三 |
54 |
y |
(1)求x,y;
(2)若从高二、高三抽取的人中选2人做专题发言,求这2人都来自高三的概率。