以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次.(1)试比较甲、乙两名运动员射击水平的稳定性;(2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望.
如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.(1)求证:平面EFG∥平面A CB1,并判断三角形类型;(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.
已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:(Ⅰ)D1E与平面BC1D所成角的大小;(Ⅱ)二面角D-BC1-C的大小;(Ⅲ)异面直线B1D1与BC1之间的距离.
在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成角的余弦值.
已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC.
已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小