某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段,…后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分.
已知函数. (1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率; (2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.
已知函数,其中. (1)若在处取得极值,求的值; (2)求的单调区间; (3)若的最小值为1,求的取值范围.
已知是椭圆的左、右焦点,过点作 倾斜角为的动直线交椭圆于两点.当时,,且. (1)求椭圆的离心率及椭圆的标准方程; (2)求△面积的最大值,并求出使面积达到最大值时直线的方程.
已知函数. (1)解关于的不等式; (2)若对,恒成立,求的取值范围.
已知直线的参数方程为(t为参数),曲线C的极坐标方程是以极点为原点,极轴为x轴正方向建立直角坐标系,点,直线与曲 线C交于A,B两点. (1)写出直线的普通方程与曲线C的直角坐标方程; (2)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值.