已知函数,。(1)求函数的最小正周期和单调递减区间;(2)求函数在区间上的最小值和最大值,并求出取得最值时的值。
(本小题满分12分)在△中,已知、、分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,且△的面积为,求.
(本小题满分12分)已知数列的前项和为(1)求数列的通项公式; (2)若,求数列的前项和.
(本小题满分8分)已知数列的通项公式.(1)求,;(2)若,分别是等比数列的第1项和第2项,求数列的通项公式.
设数列{n}满足1=,n+1=n2+1,.(Ⅰ)当∈(-∞,-2)时,求证:M;(Ⅱ)当∈(0,]时,求证:∈M;(Ⅲ)当∈(,+∞)时,判断元素与集合M的关系,并证明你的结论.
某大楼共5层,4个人从第一层上电梯,假设每个人都等可能地在每一层下电梯,并且他们下电梯与否相互独立. 又知电梯只在有人下时才停止.(Ⅰ)求某乘客在第层下电梯的概率 ;(Ⅱ)求电梯在第2层停下的概率;(Ⅲ)求电梯停下的次数的数学期望.