某大楼共5层,4个人从第一层上电梯,假设每个人都等可能地在每一层下电梯,并且他们下电梯与否相互独立. 又知电梯只在有人下时才停止.(Ⅰ)求某乘客在第层下电梯的概率 ;(Ⅱ)求电梯在第2层停下的概率;(Ⅲ)求电梯停下的次数的数学期望.
已知函数. (Ⅰ)当时,求函数的极值; (Ⅱ)时,讨论的单调性; (Ⅲ)若对任意的恒有成立, 求实数的取值范围.
已知各项均不相等的等差数列的前五项和,且成等比数列. (1)求数列的通项公式; (2)设为数列的前项和,若存在,使得成立. 求实数的取值范围.
如图,是直角梯形,,,,又,,直线与直线所成的角为 (1)求证:平面⊥平面; (2)求三棱锥的体积.
已知数列的前项和满足:,数列满足:对任意有 (1)求数列与数列的通项公式; (2)记,数列的前项和为,证明:当时,
在△中,所对的边分别为,,. (1)求; (2)若,求.