给出四个命题:
①平行于同一平面的两个不重合的平面平行;
②平行于同一直线的两个不重合的平面平行;
③垂直于同一平面的两个不重合的平面平行;
④垂直于同一直线的两个不重合的平面平行;
其中真命题的序号是________.
在正方体ABCD-A1B1C1D1中,下面结论中正确的是________(把正确结论的序号都填上).
①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是.
对于四面体,以下说法中,正确的序号为(多选、少选、选错均不得分).
①若,
,
为
中点,则平面
⊥平面
;
②若,
,则
;
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以为端点的三条棱所在直线两两垂直,则
在平面
内的射影为
的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面。
如图,长方体中,
是边长为
的正方形,
与平面
所成的角为
,则棱
的长为_______;二面角
的大小为_______.
如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.
(1)证明A1C⊥平面BED;
(2)求二面角A1-DE-B的余弦值.
在四面体ABCD中,有如下结论:
①若,则
;
②若分别是
的中点,则
的大小等于异面直线
与
所成角的大小;
③若点是四面体
外接球的球心,则
在面
上的射影为
的外心;
④若四个面是全等的三角形,则为正四面体.
其中所有正确结论的序号是.
如图所示,在正方体中,点
是棱
上的一个动点,平面
交棱
于点
.给出下列四个结论:
①存在点,使得
//平面
;
②存在点,使得
平面
;
③对于任意的点,平面
平面
;
④对于任意的点,四棱锥
的体积均不变.
其中,所有正确结论的序号是___________.
如图,在边长为的正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,现沿SE,SF及EF把这个正方形折成一个三棱锥,使G1,G2,G3三点重合,重合点记为G,则点G到平面SEF的距离为___________.
如图, 平面 , , .
(Ⅰ)求证: 平面 ;
(Ⅱ)求直线 与平面 所成角的正弦值;
(Ⅲ)若二面角 的余弦值为 ,求线段 的长.
如图所示,在四边形中,
,将四边形
沿对角线
折成四面体
,使平面
平面
,则下列结论正确的是 .
(1);
(2);
(3)与平面
所成的角为
;
(4)四面体的体积为
.
长方体的各顶点都在球
的球面上,其中
.
两点的球面距离记为
,
两点的球面距离记为
,则
的值为 .