如图,在四棱锥中,底面为菱形,,为的中点.
(1)若,求证:平面平面;
(2)设点是线段上的一点,,且平面.
(1)求实数的值;
(2)若,且平面平面,求二面角的大小.
如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)判定AE与PD是否垂直,并说明理由;
(Ⅱ)若PA=2,求二面角E-AF-C的余弦值.
如图,在正方体的棱长为,为棱上的一动点.
(1)若为棱的中点,
①求四棱锥的体积
②求证:面面
(2)若面,求证:为棱的中点.
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AB,.
(1)求证:证明:BD⊥平面PAC;
(2)求PC与平面PAB所成角的正切值.
如图所示,在四棱锥PABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)证明:PC⊥AD;
(2)求二面角A-PC-D的正弦值.
如图,是圆台上底面圆的直径,是圆上不同于的一点,是下底面圆上一点,过的截面垂直与下底面,为的中点,又.
(1)求证:平面;
(2)求二面角的余弦值.