在四棱锥中,底面为矩形,侧棱底面,且,过棱的中点,作交于点,连接(Ⅰ)证明:;(Ⅱ)求异面直线与所成角的余弦值及二面角的余弦值.
已知函数. (Ⅰ)若曲线在和处的切线互相平行,求的值; (Ⅱ)求的单调区间; (Ⅲ)设,若对任意,均存在,使得,求的取值范围.
已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率. (1)求椭圆的方程; (2)设O为坐标原点,点A,B分别在椭圆和上, ,求直线的方程.
已知数列的前项和,数列满足. (Ⅰ)求数列的通项;(Ⅱ)求数列的通项; (Ⅲ)若,求数列的前项和.
设函数在及时取得极值. (1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围.
已知椭圆()的右焦点为,离心率为. (Ⅰ)若,求椭圆的方程; (Ⅱ)设直线与椭圆相交于,两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.