在四棱锥中,底面为矩形,侧棱底面,且,过棱的中点,作交于点,连接(Ⅰ)证明:;(Ⅱ)求异面直线与所成角的余弦值及二面角的余弦值.
已知曲线C:y=x3-3x2+2x,直线l:y=kx,且l与C切于点(x0,y0)(x0≠0),求直线l的方程及切点坐标。
利用导数求和 (1)Sn=1+2x+3x2+…+nxn-1(x≠0,n∈N*) (2)Sn=C+2C+3C+…+nC,(n∈N*)
求函数的导数:
求证:任何一个实系数一元三次方程a0x3+a1x2+a2x+a3=0(a0,a1,a2,a3∈R,a0≠0)至少有一个实数根.
已知f(x)= (1)求f(-x); (2)求常数a的值,使f(x)在区间(-∞,+∞)内处处连续.