已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率.(1)求椭圆的方程;(2)设O为坐标原点,点A,B分别在椭圆和上, ,求直线的方程.
已知,点依次满足。(1)求点的轨迹;(2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设().(1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.
如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.(1)求证:BF∥平面ACE;(2)求证:BF⊥BD.
在中,角所对的边分别为。已知,.(1)若,求的面积; (2)求的值.
已知椭圆的焦点为,点是椭圆上的一点,与轴的交点恰为的中点, .(1)求椭圆的方程;(2)若点为椭圆的右顶点,过焦点的直线与椭圆交于不同的两点,求面积的取值范围.